Metal Nanoshells for Biosensing Applications [1]

Biosensors are analytical tools used to detect the presence of a number of chemical and biological agents such as viruses, drugs, or bacterium in biological or ecological systems. Nanoshell biosensors work by emitting a signal that is characteristic of the virus [2], toxin, or bacteria [3] to be measured, thus identifying the presence or absence of the material. The ratio between the thicknesses of the gold nanoshell to the non-conductive, silicon [4] core determines the signal to be emitted. Gold is used because of its non-reactive properties and conductive nature, allowing the nanoparticle [5] to absorb specific frequencies of infrared or ultraviolet light [6].

These particles can range in size, but typically have a shell thickness range of 5-20 nm and a core diameter of 120 nm. These patented metal nanoshell particles allow for the accurate sensing of biological analytes and can also be used for electrochemical labeling of molecules such as drug metabolites, while remaining inert in solution or suspension[1]. In medicine, these biosensors can be used for everything from monitoring blood glucose levels in diabetics to detection of pathogens to detection of drug or toxin metabolites[2].

References

Author:

Tai Wallace [14]

Product Name:

- Metal Nanoshells [15]
Development Stage:

- Commercial [16]

Key Words:

- Virus [2]
- Biological Sensing [17]
- Electrochemical Sensing [18]
- Nanoshells [19]

Mechanism:

- Passive Nanostructure [20]

Source:

Nanotechnological Applications in Health and Medicine [12]

Summary:

Metal nanoshell biosensors allow for the more accurate and cost effective sensing in biomedical and environmental monitoring [21].

Function:

- Biological Sensing and Monitoring [22]

Material:

- Gold [23]
- Silicon [24]

Source:

Metal Nanoshells for Biosensing Applications [United States Patent], [10]
Benefit Summary:

This product has the potential to improve human health 25 as well as environmental health 25 by allowing for the faster and more precise monitoring and sensing of harmful pathogens and toxins.

Benefit:

- Health 26
- Improved Environmental Quality 27
- Monitoring/Early Warning 28

Risk Summary:

While gold is an inert metal, many elements react differently at the nanoscale. Free small aspect nanoparticles 29 may pose biological health 25 risks, especially if inhaled or released into the environment. The risks of these particles is relatively unknown and more research must be conducted to determine what their ecological and biological effects are. There may be concerns with any nanoparticle 5, not just these, that relate to bioaccumulation and changes in physiochemistry.

Risk Characterization:

- Uncertain 30

Risk Assessment:

- Ecological Risks 31
- Health Risks 32

Source:

Platinum group elements in raptor eggs, faeces, blood, liver and kidney 33

Facility:

- Medicine 34
Activity:

- Sensing [35]

Substitute:

- Existing Technology [36]

Challenge Area:

- Health [37]

CNS-ASU research, education, and outreach activities are supported by the National Science Foundation under cooperative agreement #0937591.

Terms and Conditions

Source URL: https://nice.asu.edu/nano/metal-nanoshells-biosensing-applications

Links:
[1] https://nice.asu.edu/nano/metal-nanoshells-biosensing-applications
[2] https://nice.asu.edu/keywords/virus
[3] https://nice.asu.edu/keywords/bacteria
[5] https://nice.asu.edu/keywords/nanoparticle
[14] https://nice.asu.edu/users/tai-wallace
[16] https://nice.asu.edu/development-stage/commercial
[17] https://nice.asu.edu/keywords/biological-sensing
[18] https://nice.asu.edu/keywords/electrochemical-sensing